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SOME EXACT SOLUTIONS TO EQUATIONS OF 

TRANSIENT FLOW WITH SUCTION FOR A VISCOUS FLUID 

L. F. Kozlov and Yu. A. Ptukha UDC 532.526 

Self-adjoint asymptotic solutions to the equations of flow are constructed for a 
viscous fluid near a permeable plane boundary. 

We consider the problem of transient plane flow of an incompressible power-law non- 
Newtonian fluid near an infinitely large permeable wall in the plane of the x axis (Pig. i). 
The fluid is uniformly sucked through the wall at a velocity Vo(t). At the instant of time 
t = 0 the wall is suddenly set in motion at a velocity Uo(t) in the direction of the x axis 
[i]. 

We will consider only asymptotic solution, i.e., assume that all derivatives are d/dxs 
0. At infinity we let the velocity be not zero, as is usually done, but finite [2]. Under 
these assumptions, the equations of motion for a power-law fluid become 

av__.~ § Vo (t) - - -  

at ay p \ ay ] ay 2 

dVo 1 ap 
dt p c3y 

(i) 

(2) 

with the boundary conditions for the components of velocity and pressure 

vl=v2=O at t=O, y>O, (3) 

v~ = Uo (t), v~ = Vo (t), p = po (t) at V = O, t > O. ( 4 )  

We will henceforth deal only with the case In I < i. From Eq. (2) and the boundary condition 
(4) we determine the pressure 
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IY Uo (t) 
.Vo(,) 

Fig. i. System of 
coordinates and 
model of the wall. 

dVo 
p = po (t) - p - - [ i - -  y 

The self-adjoint solution to Eq. (i) is found with the aid of the new variable 

[ P ]'/(n~-')Y--~Vo(t)dt" ,, 
~l = 2mn(n + 1) t I/("+1) 

After a few transformations, we arrive at the ordinary differential equation 

d2v~ +2~1( d v l ) 2 - n = o  
d~l 2 , drl 

and the boundary conditions 

where 

(5) 

(6) 

~ 2 1 = 0  a t  11-+oo , (7) 

o I = U o ( I  ) at r l = r  n), l > 0 ,  (8) 

O ] l/(n+~.) ~Vo(t)dt 
qb(/, n) = - -  2mn(n q- 1) t l/{n+l) " 

The g e n e r a l  s o l u t i o n  to Eq. (6) i s  

vl = (1 - -  n) 1/~n-1) j" Oi z -  c1)l/(n-l)dI] @ C~. (9) 

A similar self-adjoint solution in form (9) has been obtained in another study [3] but only 

n 
for specific values of Uo(t) and Vo(t), viz., Uo =const and Vo ~t 1+n- The final form of 
the solution depends on the value of n and the sign of constant CI. 

We will take a specific value of n and will define the sign of CI as 

Ct = ' + ' a  z. 

After the constant C2 has been determined, let the solation be sought in the form 

V 1 " =  ~ ( ~ ,  a ) .  

Determination of the constant a reduces to resolution of a certain relation 

Uo (t) = ~* [t, Vo (t), a]. (lO) 

In order to ensure self-adjointness of the solution, it is necessary to obtain the value of 
a from relation (i0) as a constant. Obviously, the condition of constancy of a will be 
satisfied not for arbitrary functions Uo(t) and Vo(t) but only for these functions given in 
the form (i0). This imposes a constraint on the form of function Uo(t) with an arbitrary 
function Vo(t) or vice versa. This then narrows down appreciably the class of possible 
solutions to the problem (6)-(8). The specific solution will depend on Uo(t) and Vo(t), viz., 

v~ = vl (t, y, Uo, Vo). 

Let us consider a few special cases. 

i. n = 1/3. After integrating the expression (9) and satisfying the boundary conditions 
(7)-(8), we write the solution in the form of a system where one of the parameters Uo(t) or 
Vo(t) is arbitrary and the other is related to it according to expression (i0), and thus 
determine the constant CI: 

'v~ = t,5 l'SC]-t [ 1 

= 1 51"SC -1 [ U 0 ( t )  , . 1 1 - -  

V n  ~ -  C, ' 

qO(t, 1/3) ] .  
Vq#( t ,  1/3) -- Cx 

(ii) 
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v, Uo 

F i g .  2 

Fig. 2. 
and the wall: 
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"i 
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lttt  

Fig. 3 

Fig. 

Longitudinal velocity of a power-law fluid 
vl/A and Uo/A in m/sec. 

.x 

(n = 1 / 3 )  

3. Model of a channel with moving permeable walls. 

When CI :a 2, then solution (ii) is valid for It(t, i/3)[ >a and I~[ >a" When CI =--a 2, 
then solution (11) is valid for any n. The quantities vl/A and Uo(t)/A with A=--l.51"5a -2 
have been plotted in Fig. 2 for a =I, 3, 5, and 8. 

2. n = 2/3. When C~ =--a 2, then integration of expression (9) and the boundary condi- 
tions (7)-(8) yield [4] 

vl = 2 7 [  ~] 3~ 3 arctg 
4a 2 (~1 z + aZ) z § 8a~ (~2 + a z) + 8a---T 

Uo (t) = 27 { r (t, 2/3) 3q~ (t, 2/3) 3 _ arctg 
4a z [~ (t, 2/3) + aZ] z ~- 8a~ [cbz (t, 2/3) -}- a z] § 8a 5 

= a  2 When C I , then the solution is obtained in the form 

~] 3~1 + 3 
v ~ = - - 2 7  4a z (a z -  ~lz) z + 8a ~ ( az - ~l z) 16a 5 

Uo (i) ---- - -  27 { r (t, 2/3) 3q~ (t, 2/3) 
4a z |a  z __ q~z (t, 2/3)] z +- 8a~ [a z -  q~ (t, 2/3)] -~ 

a 1-6-aa~ ] ' 

r  2/3) 3~ ]. 

f a 16a 5 

in0+ o  p] 
3 In a + r  2/3) 1 

16a 5 a - - r  2/3) ]" (12) 

Solution (12) has singularities at the points n = • 
according to expression (9), appear at positive values of CI. 

In an analogous manner we will treat the transient flow of an incompressible viscous 
fluid through an infinitely long flat channel with moving permeable walls (Fig. 3). The 
walls can move in two mutually perpendicular directions with U1(t), U2(t) along the x axis 
and rl(t), r2(t) along the y axis as functions of time. 

On the basis of the same original simplifying assumptions, the equations of motion 

- -  02U1 Or, +Vo(t) Ovl _ v _ _ ,  
Ot Oy Oy 2 

dVo 1 Op 

for a Newtonian fluid become 

dt P Oy 

Since Inl < I, these singularities will, 

(13) 

with the boundary conditions 

v1= v2=0 when t~0, (14) 

vl=Ul(t), v~=Vo(t), p=pl(t) at y=q(t ) ,  (15) 

v z = U 2 ( t ) ,  v2 Vo(t), p = p 2 ( t )  at y = r ~ ( t ) .  (16) 
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From Eqs. (13) we determine the pressure 

dVo p = - - p - - ~  y +C(t). 

Function C(t) will be determined from the conditions (15) and (16): 

Pl (t) = - -  p ~ 0 (t) + C (t), 
(17) 

dr0 c (0. p~ (t) = - o - -d- / -  r~ (t) + 

Having two conditions (17) for one unknown function C(t) makes the problem an indeterminate 
one, which is logical in the given formulation. Since the fluid is incompressible and the 
channel walls are infinitely large, it is necessary to satisfy conditions of coupling 
between the change in pressure and the vibration mode of the channel walls 

- dVo 
P2 (t) - -  p~ (t) = - -  9 - - ~  [r~ (t) - -  r~ (t)l. (18) 

When relation (18) is satisfied, then function C(t) will be determined uniquely and the pres- 
sure can be expressed as 

dVo dVo 
p = p i - -  p - - ~ -  I v - -  rl (t)] = p~ + p ~ [r2 (t) - -  v]. 

Introduction of the new variable 

Y --  .1" Vo (t) dt 
n =  V ~ i -  

r e d u c e s  t h e  p rob l em o f  d e t e r m i n i n g  t h e  a s y m p t o t i c  p r o f i l e  of  t h e  l o n g i t u d i n a l  v e l o c i t y  t o  
a s o l u t i o n  of  t h e  o r d i n a r y  d i f f e r e n t i a l  e q u a t i o n  

d2Vl -Jr- 2~1 dvk = O, (19) 
d~l ~" d~l 

Vl = 0 as ~1 - +  oo, 

r~ (t) --.f Vo (t) dt 
V, .=  U l ( t )  at ~l = V 4 v t  

r2 (t) --S Vo (t) dt 
v , = U  2(t) at ~ l =  V ' 4 - ~  

for the conditions 

The solution to Eq. (19) is 

with the integration constant A. 
tions 

( 
obtained upon satisfying the boundary conditions. 

Therefore, the system 

Vl (~t) -- A (1 -- erf N), 

Self-adjointness of this solution is ensured by the rela- 

UI(t)= A [ 1 - - e r r  ( h - - f  Vodt 

r~  - -  ~ Vodt 

dVo (ro-- y), 
P = P~ - -  P (y - -  rl) = p~ + 9 --~ 

vl 1 err ( y -  f V~ 
A - - -  )' 
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v., = Vo(t), U---L -~ 1 - - e r f  / fV~[r~=~___~.dt \), 
" A \ V--4•[ 

u~ _ 1 - - e r f  {r2--~Vodt 

constitutes the solution to the given problem for a Newtonian fluid. 

In the case of a non-Newtonian power-law fluid, too, the distribution of velocity and 
pressure in the channel will be determined by Eqs. (i) and (2) with the boundary conditions 
(14)-(16). With the new variable (5) we obtain the ordinary differential equation (6), 
which must be solved for the boundary conditions 

v x = = O  as ~--~oo, v~=U~(t) at N : O ~ ( t ,  n), v~=Uz(t)  

at ~ ~ ~ 2 ( t ,  n) ,  

where 

Oi(t, n ) = I  P ]l/(~+~ r~(t)--~Vo(t)dt 
2mn(n + l) tl/~+1) , i= 1, 2. 

The general solution to Eq. (6) appears in the form (9). In analogy to the preceeding prob- 
lem of a plate in an unbounded fluid, the solution can be written as 

dVo 
P = P~ - P --$i- (y  - r~) = m + p (r~ - -  y) ,  

Vl = ~ (~, a), v~ = Vo (t),  

U t  = ~ [01 (t ,  n), a], U~ = ~ [02 (t,  n), a] .  

The final form of the solution will depend on the value of exponent n and on the sign of 
constant Ca =• 2. 

Analogous solutions can also be obtained for the problem where an incompressible vis- 
cous fluid moves between an arbitrary number of moving permeable boundaries. 

NOTATION 

x, y, rectangular coordinates; t, time coordinate; ~, a dimensionless coordinate; m, 
n, ~, p, parameters characterizing the fluid; p, pressure in the fluid; vl and v2, components 
of the fluid velocity along axes x and y, respectively; UI and U2, velocities of the wall 
along the x axis; rl and r2, displacements along the y axis; and Vo, suction velocity. 

2. 
3. 

4. 
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